Particle Filtering, Beamforming and Multiple Signal Classification for the Analysis of Magnetoencephalography Time Series: a Comparison of Algorithms
نویسندگان
چکیده
We present a comparison of three methods for the solution of the magnetoencephalography inverse problem. The methods are: a linearly constrained minimum variance beamformer, an algorithm implementing multiple signal classification with recursively applied projection and a particle filter for Bayesian tracking. Synthetic data with neurophysiological significance are analyzed by the three methods to recover position, orientation and amplitude of the active sources. Finally, a real data set evoked by a simple auditory stimulus is considered.
منابع مشابه
Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملExamining the Effects of One- and Three-Dimensional Spatial Filtering Analyses in Magnetoencephalography
Spatial filtering, or beamforming, is a commonly used data-driven analysis technique in the field of Magnetoencephalography (MEG). Although routinely referred to as a single technique, beamforming in fact encompasses several different methods, both with regard to defining the spatial filters used to reconstruct source-space time series and in terms of the analysis of these time series. This pap...
متن کاملMagnetic source localization via linearly constrained minimum variance spatial filtering
Spatial filtering has a long history of successful application in radar and sonar problems (e.g. [1,2]). The process of spatial filtering is also known as beamforming, since early spatial filters were designed to form pencil beams for either receiving or transmitting signals. More recently, spatial filtering has been applied to EEG and MEG [3–6, 8] to localize intracranial sources of electrical...
متن کاملDelay Spoofing Reduction in GPS Navigation System based on Time and Transform Domain Adaptive Filtering
Due to widespread use of Global Positioning System (GPS) in different applications, the issue of GPS signal interference cancelation is becoming an increasing concern. One of the most important intentional interferences is spoofing signals. An effective interference (delay spoof) reduction method based on adaptive filtering is developed in this paper. The principle of method is using adaptive f...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کامل